特征之间存在部分重叠,但特征类型间存在着互补,融合这些不同抽象层次的特征可更好的识别软件的真正性质。且恶意软件通常伪造出和良性软件相似的特征,逃避反**软件的检测,但恶意软件很难同时伪造多个抽象层次的特征逃避检测。基于该观点,本发明实施例提出一种基于多模态深度学习的恶意软件检测方法,以实现对恶意软件的有效检测,提取了三种模态的特征(dll和api信息、pe格式结构信息和字节码3-grams),提出了通过前端融合、后端融合和中间融合这三种融合方式集成三种模态的特征,有效提高恶意软件检测的准确率和鲁棒性,具体步骤如下:步骤s1、提取软件样本的二进制可执行文件的dll和api信息、pe格式结构信息以及字节码n-grams的特征表示,生成软件样本的dll和api信息特征视图、格式信息特征视图以及字节码n-grams特征视图;统计当前软件样本的导入节中引用的dll和api,提取得到当前软件样本的二进制可执行文件的dll和api信息的特征表示。对当前软件样本的二进制可执行文件进行格式结构解析,并按照格式规范提取**该软件样本的格式结构信息,得到该软件样本的二进制可执行文件的pe格式结构信息的特征表示。第三方实验室验证数据处理速度较上代提升1.8倍。深圳做软件测试报告
不*可以用于回归测试,也可以为以后的测试提供参考。[4](8)错误不可避免原则。在测试时不能首先假设程序中没有错误。[4]软件测试方法分类编辑软件测试方法的分类有很多种,以测试过程中程序执行状态为依据可分为静态测试(StaticTesting,ST)和动态测试(DynamicTesting,DT);以具体实现算法细节和系统内部结构的相关情况为根据可分黑盒测试、白盒测试和灰盒测试三类;从程序执行的方式来分类,可分为人工测试(ManualTesting,MT)和自动化测试(AutomaticTesting,AT)。[5]软件测试方法静态测试和动态测试(1)静态测试。静态测试的含义是被测程序不运行,只依靠分析或检查源程序的语句、结构、过程等来检查程序是否有错误。即通过对软件的需求规格说明书、设计说明书以及源程序做结构分析和流程图分析,从而来找出错误。例如不匹配的参数,未定义的变量等。[5](2)动态测试。动态测试与静态测试相对应,其是通过运行被测试程序,对得到的运行结果与预期的结果进行比较分析,同时分析运行效率和健壮性能等。这种方法可简单分为三个步骤:构造测试实例、执行程序以及分析结果。[5]软件测试方法黑盒测试、白盒测试和灰盒测试(1)黑盒测试。太原软件检测机构代码审计发现2处潜在内存泄漏风险,建议版本迭代修复。
您当前的位置:首页>商务服务>软著退税软件测试报告软件测评软著退税软件测试报告软件测评65531产品价格:面议发货地址:北京丰台包装说明:不限产品数量:个产品规格:不限信息编号:公司编号:17099560徐经理总经理微信进入店铺在线咨询QQ咨询相关产品:航标**集团有限公司软件检测报告|软件测试报告依据科研项目验收考核指标,对项目产品应达到的主要技术指标进行评测,出具测试报告。软件检测报告|软件测试报告业主方验收评测适用于系统开发完成后,正式上线前的阶段。用户收益:•为系统建设单位(**、央企等)规避风险,提高政绩;•帮助为基金/课题项目承接方(科研院校、软件企业等)提供验收依据;•系统建设单位更直观准确地了解系统实际表现;•为验收评审**提供参考数据;•帮助系统建设方(软件企业)提升系统的含金量;适用对象:•系统建设方;•系统开发的承建方。服务流程(1)材料准备《软件产品登记测试委托申请表---模板》《用户手册---终稿》被测软件产品着作权扫描件---确认软件名称版本号。
比黑盒适用性广的优势就凸显出来了。[5]软件测试方法手动测试和自动化测试自动化测试,顾名思义就是软件测试的自动化,即在预先设定的条件下运行被测程序,并分析运行结果。总的来说,这种测试方法就是将以人驱动的测试行为转化为机器执行的一种过程。对于手动测试,其在设计了测试用例之后,需要测试人员根据设计的测试用例一步一步来执行测试得到实际结果,并将其与期望结果进行比对。[5]软件测试方法不同阶段测试编辑软件测试方法单元测试单元测试主要是对该软件的模块进行测试,通过测试以发现该模块的实际功能出现不符合的情况和编码错误。由于该模块的规模不大,功能单一,结构较简单,且测试人员可通过阅读源程序清楚知道其逻辑结构,首先应通过静态测试方法,比如静态分析、代码审查等,对该模块的源程序进行分析,按照模块的程序设计的控制流程图,以满足软件覆盖率要求的逻辑测试要求。另外,也可采用黑盒测试方法提出一组基本的测试用例,再用白盒测试方法进行验证。若用黑盒测试方法所产生的测试用例满足不了软件的覆盖要求,可采用白盒法增补出新的测试用例,以满足所需的覆盖标准。其所需的覆盖标准应视模块的实际具体情况而定。覆盖软件功能与性能的多维度检测方案设计与实施!
**小化对数损失基本等价于**大化分类器的准确度,对于完美的分类器,对数损失值为0。对数损失函数的计算公式如下:其中,y为输出变量即输出的测试样本的检测结果,x为输入变量即测试样本,l为损失函数,n为测试样本(待检测软件的二进制可执行文件)数目,yij是一个二值指标,表示与输入的第i个测试样本对应的类别j,类别j指良性软件或恶意软件,pij为输入的第i个测试样本属于类别j的概率,m为总类别数,本实施例中m=2。分类器的性能也可用roc曲线(receiveroperatingcharacteristic)评价,roc曲线的纵轴是检测率(true****itiverate),横轴是误报率(false****itiverate),该曲线反映的是随着检测阈值变化下检测率与误报率之间的关系曲线。roc曲线下面积(areaunderroccurve,auc)的值是评价分类器比较综合的指标,auc的值通常介于,较大的auc值一般表示分类器的性能较优。(3)特征提取提取dll和api信息特征视图dll(dynamiclinklibrary)文件为动态链接库文件,执行某一个程序时,相应的dll文件就会被调用。一个应用程序可使用多个dll文件,一个dll文件也可能被不同的应用程序使用。api(applicationprogramminginterface)函数是windows提供给用户作为应用程序开发的接口。第三方测评显示软件运行稳定性达99.8%,未发现重大系统崩溃隐患。沈阳cma软件认证公司
5G 与物联网:深圳艾策的下一个技术前沿。深圳做软件测试报告
每一种信息的来源或者形式,都可以称为一种模态。例如,人有触觉,听觉,视觉,嗅觉。多模态机器学习旨在通过机器学习的方法实现处理和理解多源模态信息的能力。多模态学习从1970年代起步,经历了几个发展阶段,在2010年后***步入深度学习(deeplearning)阶段。在某种意义上,深度学习可以被看作是允许我们“混合和匹配”不同模型以创建复杂的深度多模态模型。目前,多模态数据融合主要有三种融合方式:前端融合(early-fusion)即数据水平融合(data-levelfusion)、后端融合(late-fusion)即决策水平融合(decision-levelfusion)以及中间融合(intermediate-fusion)。前端融合将多个**的数据集融合成一个单一的特征向量空间,然后将其用作机器学习算法的输入,训练机器学习模型,如图1所示。由于多模态数据的前端融合往往无法充分利用多个模态数据间的互补性,且前端融合的原始数据通常包含大量的冗余信息。因此,多模态前端融合方法常常与特征提取方法相结合以剔除冗余信息,基于领域经验从每个模态中提取更高等别的特征表示,或者应用深度学习算法直接学习特征表示,然后在特性级别上进行融合。后端融合则是将不同模态数据分别训练好的分类器输出决策进行融合,如图2所示。深圳做软件测试报告
深圳艾策信息科技有限公司免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的商铺,信息的真实性、准确性和合法性由该信息的来源商铺所属企业完全负责。本站对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。
友情提醒: 建议您在购买相关产品前务必确认资质及产品质量,过低的价格有可能是虚假信息,请谨慎对待,谨防上当受骗。